Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats.
نویسندگان
چکیده
Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveolar simplification and vascular disorganization. Despite type II alveolar epithelial cell (AEC II) damage being reported previously, we found no decrease in the AEC II-specific marker, surfactant protein C (SP-C), in the BPD model in our previous study. We thus speculated that AEC II injury is not a unique mechanism of BPD-related pulmonary epithelial repair dysfunction and that abnormal transdifferentiation can exist. Newborn rats were randomly assigned to model (85% oxygen inhalation) and control groups (room air inhalation). Expressions of AEC I (aquaporin 5, T1α) and AEC II markers (SP-C, SP-B) were detected at three levels: 1) in intact lung tissue, 2) in AEC II isolated from rats in the two groups, and 3) in AEC II isolated from newborn rats, which were further cultured under either hyperoxic or normoxic conditions. In the model group, increased AEC I was observed at both the tissue and cell level, and markedly increased transdifferentiation was observed by immunofluorescent double staining. Transmission electron microscopy revealed morphological changes in alveolar epithelium such as damaged AECs, a fused air-blood barrier structure, and opened tight junctions in the model group. These findings indicate that transdifferentiation of AECs is not suppressed but rather is increased under hyperoxic treatment by compensation; however, such repair during injury cannot offset pulmonary epithelial air exchange and barrier dysfunction caused by structural damage to AECs.
منابع مشابه
CALL FOR PAPERS Biomarkers in Lung Diseases: from Pathogenesis to Prediction to New Therapies Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats
Hou A, Fu J, Yang H, Zhu Y, Pan Y, Xu S, Xue X. Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol 308: L861–L872, 2015. First published February 13, 2015; doi:10.1152/ajplung.00099.2014.—Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveol...
متن کاملRunning Title: Neonatal hyperoxia stimulates AEC II transdifferentiation
Hyperoxia stimulates the transdifferentiation of type II alveolar 1 epithelial cells in newborn rats 2 3 Ana Hou 4 Jianhua Fu 5 Haiping Yang 6 Yuting Zhu 7 Yuqing Pan 8 Shuyan Xu 9 Xindong Xue 10 11 Corresponding author 12 Email: [email protected] 13 Tel: +86 024 96615-1-50131 14 Department of Pediatrics, Shengjing Hospital of China Medical 15 University, Shenyang 110004, China 16 17 18 19 Runn...
متن کاملAsiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo
Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...
متن کاملHyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice.
Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was similar in wild-type and p47(-/-) mice a...
متن کاملHigh tidal volume mechanical ventilation with hyperoxia alters alveolar type II cell adhesion.
Patients with acute respiratory distress syndrome undergoing mechanical ventilation may be exposed to both high levels of stretch and high levels of oxygen. We hypothesized that the combination of high stretch and hyperoxia promotes loss of epithelial adhesion and impairs epithelial repair mechanisms necessary for restoration of barrier function. We utilized a model of high tidal volume mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 308 9 شماره
صفحات -
تاریخ انتشار 2015